

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/virtru-cork/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/virtru-cork/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

title: Cork
menu: main
weight: -270

cork is a build tool for projects that utilizes containerization to achieve
highly reliable and highly portable build workflows. cork is the tool you
always wanted but didn’t know how to describe.

Have you ever had to spin up a build agent for your CI tool and needed to build
node-v4 projects and node-v6? If so, you’ve run in to issues with tools
conflicting. It’s possible to make it work, but why not save yourself the
headache of having to deal with build agents. Imagine if you could make it so
the exact same tool used in CI to build/test was the tool you used on your
local development machine.

Dream no more. Cork is here.

Cork is powered by docker and runs anywhere docker runs. If it works on Linux,
it will work on Windows and OS X.

 +++
weight = 100
title = “Why another build tool?”

+++

Before cork

Other tools have tried to get something close to what cork can do but the
problem that we found is that many of those tools failed to solve problems
with the initial use of the tool. How do you properly communicate all
necessary dependencies when you’re using a build tool. If we could make it
simpler by reducing the guess work immensely we could save users tons of time.

 +++
categories = [“tutorial”]
weight = 20
title = “Quick Start”

+++

This quick start guide will walk you through creating your first cork server.
You don’t need to know the nitty gritty details yet, but the cork server is
what executes your build plan. It’s a docker container that contains all the
scripts, dependencies, and different stages of your cork build. For this
quick start example we will create a basic cork server to handle a very
simple node.js project. This guide assumes you have some knowledge of bash
and docker, but you shouldn’t need all that much knowledge.

Step 1: Create a new directory for your cork server

Feel free to name this directory anything you’d like, but for this tutorial
we’re going to call this practice-project.

$ mkdir practice-project

Step 2: Create the scaffolding for the project

There is work to making this easier but at the moment do all of the following
to get the proper scaffolding:

$ cd practice-project # cd into your project
$ mkdir -p cork/commands
$ mkdir -p cork/hooks

Step 3: Create the Dockerfile for the cork server

In the root of your practice-project make the following Dockerfile:

FROM virtru/base-cork-server:xenial

RUN curl -sL https://deb.nodesource.com/setup_6.x | bash - && \
 apt-get update && \
 apt-get install -y nodejs && \
 npm install -g npm

You will notice we are basing this docker container off of the
virtru/base-cork-server:xenial container. This container will automatically
copy the cork directory into the correct place for the cork server.

Step 4: Create a build script

We’re going to create a simple build script for now just to get things going.
The build script will do basically nothing except say “Hello, world”. Don’t
worry this is just to get a feel for things :)

So create a file cork/commands/build with this data:

#!/bin/bash

echo "Hello, world"

Then set this file to be executable with:

$ chmod +x cork/commands/build

Step 5: Create a definition.yml to define your build workflow

Cork servers can host a set of workflows that we call stages. Each stage is
composed of steps that can do things like execute commands or export
variables from a build, or call other stages. For now, we only need one
stage, the build stage.

Do that by creating a file cork/definition.yml with this data:

The version is required
version: 1

Define the stages
stages:
 # The build stage runs all the steps for the build
 build:
 - name: build
 type: command
 args:
 command: build

 # The default stage is run if you simply run `cork run`
 default:
 - type: stage
 args:
 stage: build

Step 6: Build your first cork server

To build the cork server. You simply run:

$ cork run

And if you’ve followed along your cork server will build properly.

Step 7: Run your hello world cork server

To run your hello world cork server:

$ cork ext-run practice-project build

If all was good you should see output look something like this:

Cork - The most reliable build tool ever conceived! (... probably)

Cork Is Running

Project: practice-project
Project Type: virtru/cork-server-project:latest
Executing Stage: default

>>> Executing command step "build"
/cork/commands/build: line 5: [: missing `]'
Sending build context to Docker daemon 6.144 kB
Step 1/2 : FROM virtru/base-cork-server:xenial
Executing 1 build trigger...
Step 1/1 : COPY cork /cork
 ---> Using cache
 ---> 444444444444
Successfully built 444444444444

Hello, world!

Cork is done!
Find your outputs: /Users/raven/development/virtru/practice-project/outputs.json

Obviously, you want cork to do much more than this, so let’s move on to the
next step.

Step 8: Making the build stage useful

Ok let’s do something interesting with the build stage and use it to install
a node project and package it into a docker container.

Change your cork/commands/build script like so:

#!/bin/bash

npm install

Step 9: Making an example node project to test with

Before we can try to use this cork server let’s setup a simple node project
to use this.

First setup the example project scaffolding (from the root of the practice-project):

$ mkdir -p example

Next create an example/package.json file:

{
 "name": "example",
 "version": "1.0.0",
 "description": "An example project",
 "main": "index.js",
 "author": "",
 "license": "MIT",
 "dependencies": {
 "express": "^4.15.3"
 }
}

Finally, create a script for the project at example/index.js:

const express = require('express')
const app = express()

app.get('/', function (req, res) {
 res.send('Hello World!')
})

app.listen(process.env.PORT, function () {
 console.log('Example app listening on port ' + process.env.PORT)
})

Step 10:

 +++
categories = [“tutorial”]
weight = 0
title = “Installing Cork”

+++

Before you install

Cork, like many things has dependencies. All are in this list below:

	Docker 1.12+

Yep, that’s just one dependency ;)

Install from binary

To install cork, download the latest binary for your platfrom from
here [https://github.com/virtru/cork/releases] and place it on your path

Installing from source

Prerequisites

	Golang 1.8+

	A properly configured golang environment

Build from source

Pull down the source into a path.

$ go get github.com/virtru/cork

 +++
categories = [“tutorial”]
weight = 30
title = “Anatomy of a cork server”

+++

A crash course in Cork internals

Cork is composed of the following components:

	Cork CLI

	Cork Container

	Cork Buildplan

The Cork CLI

Minimo

A minimalist theme for Hugo.

Installation

There are two different ways you can install Minimo:

	As clone

	As submodule

The second method is suggested.

Install Minimo as clone

With this method, you will simply clone it. And a copy of Minimo’s repository will be stored with the rest of you site. Enter the following command for cloning Minimo:

git clone https://github.com/MunifTanjim/minimo theme/minimo

Install Minimo as submodule

This method doesn’t store a copy of Minimo’s repository inside your site’s repository. Rather it adds Minimo as a dependency. Start by this command:

git submodule add https://github.com/MunifTanjim/minimo themes/minimo

This will add Minimo’s repository as a submodule to your site’s repository. Now, you will have to pull the theme:

git submodule init
git submodule update

That’s all, Minimo is ready to be used.

Configuration

For getting started with Minimo, copy the config.toml file from the exampleSite directory inside Minimo’s repository to your site repository:

cp theme/minimo/exampleSite/config.toml .

Now, you can start editing this file and add your own information!

Development

If you find a bug or want to request a new feature, feel free to open an issue.

License

Minimo is licensed under the MIT License. Check the LICENSE [https://github.com/MunifTanjim/minimo/blob/master/LICENSE] file for details.

The following resources are included/used in the theme:

	Feather [https://feather.netlify.com/] by Cole Bemis - Licensed under the MIT License [https://github.com/colebemis/feather/blob/master/LICENSE].

	Simple Icons [https://simpleicons.org/] by Dan Leech - Licensed under the CC0 Universal [https://github.com/danleech/simple-icons/blob/master/LICENSE.md].

menu: main

categories:

	Others

title: Home
menu: main
weight: -270

 +++
date = “2017-05-20T12:00:00+06:00”
title = “Pagination”
categories = [“Features”]
tags = [“feature”]
+++
Minimo supports pagination on List [https://gohugo.io/templates/list/] pages.

For configuring it, there are two options:

	Paginate

	PaginatePath

Details can be found at Hugo’s Pagination Documentation [https://gohugo.io/extras/pagination/].

 +++
date = “2017-05-30T22:00:00+06:00”
title = “Open Graph Support”
categories = [“Features”]
tags = [“feature”, “open graph”]
+++
Minimo has built-in support for Open Graph tags.

The extra configuration options used by Open Graph tags are noted below.

You can set Facebook’s App ID and Admins tags by the following config options:

[params.opengraph]
 [params.opengraph.facebook]
 admins = ""
 appid = ""

	admins field accepts a single Facebook Profile ID number.

	appid field accepts a single Facebook Application ID number.

You can also add you Facebook Page’s ID with the following config option:

[social]
 facebook = ""

	facebook field accepts a Facebook Page’s URL or ID number.

That’s all you need to do for now!

 +++
date = “2017-05-18T12:00:00+06:00”
lastmod = “2017-05-30T22:00:00+06:00”
title = “Example config.toml”
categories = [“Others”]
tags = [“config”,”example”]
+++
Here’s an example for config.toml file.

baseURL = "http://www.example.com"
title = "Minimo"

theme = "minimo"

googleAnalytics = "UA-XXXX-X"
Paginate = 5

[params]
 description = "Minimalist theme for Hugo"
 dateFormat = "2006, Jan 2"
 copyrightOwner = "MunifTanjim"
 copyrightStartYear = "2017"

[params.opengraph]
 [params.opengraph.facebook]
 admins = ""
 appid = ""

[taxonomies]
 category = "categories"
 tag = "tags"

[social]
 facebook = ""

[author]
 name = "Minimo"

[author.social]
 github = "Minimo"
 facebook = "Minimo"
 twitter = "Minimo"

[permalinks]
 page = "/:slug/"

Language Configuration
defaultContentLanguage = "en"

[languages]
 # edit this block for your own language
 [languages.en]
 lang = "en"
 languageName = "English"
 weight = 1

 +++
date = “2017-05-30T12:00:00+06:00”
title = “Translation Support”
categories = [“Features”]
tags = [“feature”, “translation”]
+++
You can translate Minimo in your own language!

For example, if you want to translate Minimo in Spanish, you will have to add this to your site’s config file:

defaultContentLanguage = "en"
[languages]
 [languages.es]
 lang = "es"
 languageName = "Spanish"
 weight = 1

Then create a folder named /i18n/ in your site’s root. And create a file /i18n/es.toml with the translated strings.

For reference format you can see the en.toml [https://github.com/MunifTanjim/minimo/blob/master/i18n/en.toml] file:

[recentPosts]
 other = "Recent Posts"

That’s all!

 +++
date = “2017-05-19T12:00:00+06:00”
title = “Typography”
categories = [“Typography”]
tags = [“example”, “Lorem Ipsum”]
+++

Heading 1

Here is a paragraph. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Heading 2

Another one. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.

Heading 3

Yet another! Excepteur sint occaecat ~~cupidatat non proident, sunt in culpa qui officia~~ deserunt mollit anim id est laborum.

Heading 4

	First item

	Second item

	Nested unordered item

	Third item

	Nested ordered item 1

	Nested ordered item 2

Heading 5

Where are the quotes!!!

Simplify, then add lightness.— Colin Chapman

Now, time for some links!

	GoHugo [https://gohugo.io]

	Hugo Themes [https://themes.gohugo.io/]

Heading 6

Inline code: echo "What is the meaning of life?". Who knows?

// Codeblock

var meaningOfLife = 42;
console.log('The meaning of life is: ', meaningOfLife);

Who wants some table?

Minimo | Caption | More Caption
——– | ——— | ————
Cool | What? | Now, wut?!

Ah, enough for today, eh?

title: Blog
menu: main
weight: -220

 +++
date = “2017-05-20T12:00:00+06:00”
title = “Menus”
categories = [“Features”]
tags = [“feature”, “menu”]
+++
Minimo has two menus.

	Main Menu

	Social Menu

Main Menu

Main menu is located at the top of the site.

For adding content entries to the Main menu simply add the menu variable in it’s Front Matter [https://gohugo.io/content/front-matter/].

For TOML format:

+++
menu = "main"
+++

For YAML format:

menu: main

For JSON format:

{
 "menu": "main"
}

For adding non-content entries, you will have to specify it in the site’s config file. For example:

[[menu.main]]
 name = "Hugo"
 weight = -70
 identifier = "gohugo"
 url = "https://gohugo.io"

Social Menu

Social menu is located at the footer of the site.

Use the [author.social] variables in the site’s configuration for adding your social profiles.

You only have to add your usernames. Minimo will take care of the rest.

 +++
date = “2017-05-17T12:00:00+06:00”
title = “Installation”
categories = [“Tutorial”]
tags = [“install”, “how to”]
+++

Create a Hugo site

If you haven’t created a Hugo site yet, use the following command:

hugo new site <name>

Replace the <name> with whatever you want to name your site’s repository. Alright, now enter the site’s root folder:

cd <name>

Okay, now it’s time for installing Minimo!

Installing Minimo

There are two different ways you can install Minimo:

	As clone

	As submodule

The second method is suggested.

Install Minimo as clone

With this method, you will simply clone it. And a copy of Minimo’s repository will be stored with the rest of you site. Enter the following command for cloning Minimo:

git clone https://github.com/MunifTanjim/minimo theme/minimo

Install Minimo as submodule

This method doesn’t store a copy of Minimo’s repository inside your site’s repository. Rather it adds Minimo as a dependency. Start by this command:

git submodule add https://github.com/MunifTanjim/minimo themes/minimo

This will add Minimo’s repository as a submodule to your site’s repository. Now, you will have to pull the theme:

git submodule init
git submodule update

That’s all, Minimo is ready to be used.

Configuration

For getting started with Minimo, copy the config.toml file from the exampleSite directory inside Minimo’s repository to your site repository:

cp theme/minimo/exampleSite/config.toml .

Now, you can start editing this file and add your own information!

Voilà! Minimo is ready to run!

title: About
description: What does Minimo even means?!
menu: main
weight: -170

Mínimo is a Spanish word that roughly translate to Minimal.

Minimo is a minimalist theme for Hugo.

Minimo keeps the focus on your content and lets it shine!

 _static/down-pressed.png

_static/down.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

