

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/virtru-cork/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/virtru-cork/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
cork - The most reliable build tool ever conceived (... probably)

cork is a build tool for projects that utilizes containerization to achieve
highly reliable and highly portable build workflows. cork is the tool you
always wanted but didn’t know how to describe.

Have you ever had to spin up a build agent for your CI tool and needed to build
node-v4 projects and node-v6? If so, you’ve run in to issues with tools
conflicting. It’s possible to make it work, but why not save yourself the
headache of having to deal with build agents. Imagine if you could make it so
the exact same tool used in CI to build/test was the tool you used on your
local development machine.

Dream no more. Cork is here.

Cork is powered by docker and runs anywhere docker runs. If it works on Linux,
it will work on Windows and OS X.


Quick start

For the quick start, we will be creating a brand new node-v4 project.


Initialize a project

$ cork init virtru/node-v4-project:latest








Build the project

$ cork run










Usage


Initialize a project

$ cork init [project-type]








Running all the default stage defined in the project type server

$ cork run








Run just the test stage

$ cork run test










Open Source By Virtru

This tool was created by Virtru for greater the software development community.
We’re Hiring! [https://www.virtru.com/careers/]







          

      

      

    

  

    
      
          
            
  
How to contribute

We definitely welcome patches and contribution to grpc! Here are some guidelines
and information about how to do so.


Sending patches


Getting started


	Check out the code:

 $ go get google.golang.org/grpc
 $ cd $GOPATH/src/google.golang.org/grpc







	Create a fork of the grpc-go repository.



	Add your fork as a remote:

 $ git remote add fork git@github.com:$YOURGITHUBUSERNAME/grpc-go.git







	Make changes, commit them.



	Run the test suite:

 $ make test







	Push your changes to your fork:

 $ git push fork ...







	Open a pull request.










Legal requirements

In order to protect both you and ourselves, you will need to sign the
Contributor License Agreement [https://cla.developers.google.com/clas].




Filing Issues

When filing an issue, make sure to answer these five questions:


	What version of Go are you using (go version)?

	What operating system and processor architecture are you using?

	What did you do?

	What did you expect to see?

	What did you see instead?




Contributing code

Unless otherwise noted, the Go source files are distributed under the BSD-style license found in the LICENSE file.









          

      

      

    

  

    
      
          
            
  #gRPC-Go

[image: Build Status] [https://travis-ci.org/grpc/grpc-go] [image: GoDoc] [https://godoc.org/google.golang.org/grpc]

The Go implementation of gRPC [http://www.grpc.io/]: A high performance, open source, general RPC framework that puts mobile and HTTP/2 first. For more information see the gRPC Quick Start [http://www.grpc.io/docs/] guide.


Installation

To install this package, you need to install Go and setup your Go workspace on your computer. The simplest way to install the library is to run:

$ go get google.golang.org/grpc








Prerequisites

This requires Go 1.6 or later.




Constraints

The grpc package should only depend on standard Go packages and a small number of exceptions. If your contribution introduces new dependencies which are NOT in the list [http://godoc.org/google.golang.org/grpc?imports], you need a discussion with gRPC-Go authors and consultants.




Documentation

See API documentation [https://godoc.org/google.golang.org/grpc] for package and API descriptions and find examples in the examples directory.




Status

GA




FAQ


Compiling error, undefined: grpc.SupportPackageIsVersion

Please update proto package, gRPC package and rebuild the proto files:


	go get -u github.com/golang/protobuf/{proto,protoc-gen-go}

	go get -u google.golang.org/grpc

	protoc --go_out=plugins=grpc:. *.proto









          

      

      

    

  

    
      
          
            
  
Change Log

ATTN: This project uses semantic versioning [http://semver.org/].


Unreleased [https://github.com/urfave/cli/compare/v1.18.0...HEAD]




[1.19.1] - 2016-11-21


Fixed


	Fixes regression introduced in 1.19.0 where using an ActionFunc as
the Action for a command would cause it to error rather than calling the
function. Should not have a affected declarative cases using func(c *cli.Context) err).

	Shell completion now handles the case where the user specifies
--generate-bash-completion immediately after a flag that takes an argument.
Previously it call the application with --generate-bash-completion as the
flag value.








[1.19.0] - 2016-11-19


Added


	FlagsByName was added to make it easy to sort flags (e.g. sort.Sort(cli.FlagsByName(app.Flags)))

	A Description field was added to App for a more detailed description of
the application (similar to the existing Description field on Command)

	Flag type code generation via go generate

	Write to stderr and exit 1 if action returns non-nil error

	Added support for TOML to the altsrc loader

	SkipArgReorder was added to allow users to skip the argument reordering.
This is useful if you want to consider all “flags” after an argument as
arguments rather than flags (the default behavior of the stdlib flag
library). This is backported functionality from the removal of the flag
reordering [https://github.com/urfave/cli/pull/398] in the unreleased version
2

	For formatted errors (those implementing ErrorFormatter), the errors will
be formatted during output. Compatible with pkg/errors.






Changed


	Raise minimum tested/supported Go version to 1.2+






Fixed


	Consider empty environment variables as set (previously environment variables
with the equivalent of "" would be skipped rather than their value used).

	Return an error if the value in a given environment variable cannot be parsed
as the flag type. Previously these errors were silently swallowed.

	Print full error when an invalid flag is specified (which includes the invalid flag)

	App.Writer defaults to stdout when nil

	If no action is specified on a command or app, the help is now printed instead of panicing

	App.Metadata is initialized automatically now (previously was nil unless initialized)

	Correctly show help message if -h is provided to a subcommand

	context.(Global)IsSet now respects environment variables. Previously it
would return false if a flag was specified in the environment rather than
as an argument

	Removed deprecation warnings to STDERR to avoid them leaking to the end-user

	altsrcs import paths were updated to use gopkg.in/urfave/cli.v1. This
fixes issues that occurred when gopkg.in/urfave/cli.v1 was imported as well
as altsrc where Go would complain that the types didn’t match








[1.18.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user (backported)








1.18.0 [https://github.com/urfave/cli/compare/v1.17.0...v1.18.0] - 2016-06-27


Added


	./runtests test runner with coverage tracking by default

	testing on OS X

	testing on Windows

	UintFlag, Uint64Flag, and Int64Flag types and supporting code






Changed


	Use spaces for alignment in help/usage output instead of tabs, making the
output alignment consistent regardless of tab width






Fixed


	Printing of command aliases in help text

	Printing of visible flags for both struct and struct pointer flags

	Display the help subcommand when using CommandCategories

	No longer swallows panics that occur within the Actions themselves when
detecting the signature of the Action field








[1.17.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.17.0 [https://github.com/urfave/cli/compare/v1.16.0...v1.17.0] - 2016-05-09


Added


	Pluggable flag-level help text rendering via cli.DefaultFlagStringFunc

	context.GlobalBoolT was added as an analogue to context.GlobalBool

	Support for hiding commands by setting Hidden: true – this will hide the
commands in help output






Changed


	Float64Flag, IntFlag, and DurationFlag default values are no longer
quoted in help text output.

	All flag types now include (default: {value}) strings following usage when a
default value can be (reasonably) detected.

	IntSliceFlag and StringSliceFlag usage strings are now more consistent
with non-slice flag types

	Apps now exit with a code of 3 if an unknown subcommand is specified
(previously they printed “No help topic for...”, but still exited 0. This
makes it easier to script around apps built using cli since they can trust
that a 0 exit code indicated a successful execution.

	cleanups based on Go Report Card
feedback [https://goreportcard.com/report/github.com/urfave/cli]








[1.16.1] - 2016-08-28


Fixed


	Removed deprecation warnings to STDERR to avoid them leaking to the end-user








1.16.0 [https://github.com/urfave/cli/compare/v1.15.0...v1.16.0] - 2016-05-02


Added


	Hidden field on all flag struct types to omit from generated help text






Changed


	BashCompletionFlag (--enable-bash-completion) is now omitted from
generated help text via the Hidden field






Fixed


	handling of error values in HandleAction and HandleExitCoder








1.15.0 [https://github.com/urfave/cli/compare/v1.14.0...v1.15.0] - 2016-04-30


Added


	This file!

	Support for placeholders in flag usage strings

	App.Metadata map for arbitrary data/state management

	Set and GlobalSet methods on *cli.Context for altering values after
parsing.

	Support for nested lookup of dot-delimited keys in structures loaded from
YAML.






Changed


	The App.Action and Command.Action now prefer a return signature of
func(*cli.Context) error, as defined by cli.ActionFunc.  If a non-nil
error is returned, there may be two outcomes:
	If the error fulfills cli.ExitCoder, then os.Exit will be called
automatically

	Else the error is bubbled up and returned from App.Run





	Specifying an Action with the legacy return signature of
func(*cli.Context) will produce a deprecation message to stderr

	Specifying an Action that is not a func type will produce a non-zero exit
from App.Run

	Specifying an Action func that has an invalid (input) signature will
produce a non-zero exit from App.Run






Deprecated


	[bookmark: deprecated-cli-app-runandexitonerror]
cli.App.RunAndExitOnError, which should now be done by returning an error
that fulfills cli.ExitCoder to cli.App.Run.

	[bookmark: deprecated-cli-app-action-signature] the legacy signature for
cli.App.Action of func(*cli.Context), which should now have a return
signature of func(*cli.Context) error, as defined by cli.ActionFunc.






Fixed


	Added missing *cli.Context.GlobalFloat64 method








1.14.0 [https://github.com/urfave/cli/compare/v1.13.0...v1.14.0] - 2016-04-03 (backfilled 2016-04-25)


Added


	Codebeat badge

	Support for categorization via CategorizedHelp and Categories on app.






Changed


	Use filepath.Base instead of path.Base in Name and HelpName.






Fixed


	Ensure version is not shown in help text when HideVersion set.








1.13.0 [https://github.com/urfave/cli/compare/v1.12.0...v1.13.0] - 2016-03-06 (backfilled 2016-04-25)


Added


	YAML file input support.

	NArg method on context.








1.12.0 [https://github.com/urfave/cli/compare/v1.11.1...v1.12.0] - 2016-02-17 (backfilled 2016-04-25)


Added


	Custom usage error handling.

	Custom text support in USAGE section of help output.

	Improved help messages for empty strings.

	AppVeyor CI configuration.






Changed


	Removed panic from default help printer func.

	De-duping and optimizations.






Fixed


	Correctly handle Before/After at command level when no subcommands.

	Case of literal - argument causing flag reordering.

	Environment variable hints on Windows.

	Docs updates.








1.11.1 [https://github.com/urfave/cli/compare/v1.11.0...v1.11.1] - 2015-12-21 (backfilled 2016-04-25)


Changed


	Use path.Base in Name and HelpName

	Export GetName on flag types.






Fixed


	Flag parsing when skipping is enabled.

	Test output cleanup.

	Move completion check to account for empty input case.








1.11.0 [https://github.com/urfave/cli/compare/v1.10.2...v1.11.0] - 2015-11-15 (backfilled 2016-04-25)


Added


	Destination scan support for flags.

	Testing against tip in Travis CI config.






Changed


	Go version in Travis CI config.






Fixed


	Removed redundant tests.

	Use correct example naming in tests.








1.10.2 [https://github.com/urfave/cli/compare/v1.10.1...v1.10.2] - 2015-10-29 (backfilled 2016-04-25)


Fixed


	Remove unused var in bash completion.








1.10.1 [https://github.com/urfave/cli/compare/v1.10.0...v1.10.1] - 2015-10-21 (backfilled 2016-04-25)


Added


	Coverage and reference logos in README.






Fixed


	Use specified values in help and version parsing.

	Only display app version and help message once.








1.10.0 [https://github.com/urfave/cli/compare/v1.9.0...v1.10.0] - 2015-10-06 (backfilled 2016-04-25)


Added


	More tests for existing functionality.

	ArgsUsage at app and command level for help text flexibility.






Fixed


	Honor HideHelp and HideVersion in App.Run.

	Remove juvenile word from README.








1.9.0 [https://github.com/urfave/cli/compare/v1.8.0...v1.9.0] - 2015-09-08 (backfilled 2016-04-25)


Added


	FullName on command with accompanying help output update.

	Set default $PROG in bash completion.






Changed


	Docs formatting.






Fixed


	Removed self-referential imports in tests.








1.8.0 [https://github.com/urfave/cli/compare/v1.7.1...v1.8.0] - 2015-06-30 (backfilled 2016-04-25)


Added


	Support for Copyright at app level.

	Parent func at context level to walk up context lineage.






Fixed


	Global flag processing at top level.








1.7.1 [https://github.com/urfave/cli/compare/v1.7.0...v1.7.1] - 2015-06-11 (backfilled 2016-04-25)


Added


	Aggregate errors from Before/After funcs.

	Doc comments on flag structs.

	Include non-global flags when checking version and help.

	Travis CI config updates.






Fixed


	Ensure slice type flags have non-nil values.

	Collect global flags from the full command hierarchy.

	Docs prose.








1.7.0 [https://github.com/urfave/cli/compare/v1.6.0...v1.7.0] - 2015-05-03 (backfilled 2016-04-25)


Changed


	HelpPrinter signature includes output writer.






Fixed


	Specify go 1.1+ in docs.

	Set Writer when running command as app.








1.6.0 [https://github.com/urfave/cli/compare/v1.5.0...v1.6.0] - 2015-03-23 (backfilled 2016-04-25)


Added


	Multiple author support.

	NumFlags at context level.

	Aliases at command level.






Deprecated


	ShortName at command level.






Fixed


	Subcommand help output.

	Backward compatible support for deprecated Author and Email fields.

	Docs regarding Names/Aliases.








1.5.0 [https://github.com/urfave/cli/compare/v1.4.1...v1.5.0] - 2015-02-20 (backfilled 2016-04-25)


Added


	After hook func support at app and command level.






Fixed


	Use parsed context when running command as subcommand.

	Docs prose.








1.4.1 [https://github.com/urfave/cli/compare/v1.4.0...v1.4.1] - 2015-01-09 (backfilled 2016-04-25)


Added


	Support for hiding -h / --help flags, but not help subcommand.

	Stop flag parsing after --.






Fixed


	Help text for generic flags to specify single value.

	Use double quotes in output for defaults.

	Use ParseInt instead of ParseUint for int environment var values.

	Use 0 as base when parsing int environment var values.








1.4.0 [https://github.com/urfave/cli/compare/v1.3.1...v1.4.0] - 2014-12-12 (backfilled 2016-04-25)


Added


	Support for environment variable lookup “cascade”.

	Support for Stdout on app for output redirection.






Fixed


	Print command help instead of app help in ShowCommandHelp.








1.3.1 [https://github.com/urfave/cli/compare/v1.3.0...v1.3.1] - 2014-11-13 (backfilled 2016-04-25)


Added


	Docs and example code updates.






Changed


	Default -v / --version flag made optional.








1.3.0 [https://github.com/urfave/cli/compare/v1.2.0...v1.3.0] - 2014-08-10 (backfilled 2016-04-25)


Added


	FlagNames at context level.

	Exposed VersionPrinter var for more control over version output.

	Zsh completion hook.

	AUTHOR section in default app help template.

	Contribution guidelines.

	DurationFlag type.








1.2.0 [https://github.com/urfave/cli/compare/v1.1.0...v1.2.0] - 2014-08-02


Added


	Support for environment variable defaults on flags plus tests.








1.1.0 [https://github.com/urfave/cli/compare/v1.0.0...v1.1.0] - 2014-07-15


Added


	Bash completion.

	Optional hiding of built-in help command.

	Optional skipping of flag parsing at command level.

	Author, Email, and Compiled metadata on app.

	Before hook func support at app and command level.

	CommandNotFound func support at app level.

	Command reference available on context.

	GenericFlag type.

	Float64Flag type.

	BoolTFlag type.

	IsSet flag helper on context.

	More flag lookup funcs at context level.

	More tests &amp;

 docs.






Changed


	Help template updates to account for presence/absence of flags.

	Separated subcommand help template.

	Exposed HelpPrinter var for more control over help output.








1.0.0 [https://github.com/urfave/cli/compare/v0.1.0...v1.0.0] - 2013-11-01


Added


	help flag in default app flag set and each command flag set.

	Custom handling of argument parsing errors.

	Command lookup by name at app level.

	StringSliceFlag type and supporting StringSlice type.

	IntSliceFlag type and supporting IntSlice type.

	Slice type flag lookups by name at context level.

	Export of app and command help functions.

	More tests &amp;

 docs.








0.1.0 - 2013-07-22


Added


	Initial implementation.











          

      

      

    

  

    
      
          
            
  
cli

[image: Build Status] [https://travis-ci.org/urfave/cli]
[image: Windows Build Status] [https://ci.appveyor.com/project/urfave/cli]
[image: GoDoc] [https://godoc.org/github.com/urfave/cli]
[image: codebeat] [https://codebeat.co/projects/github-com-urfave-cli]
[image: Go Report Card] [https://goreportcard.com/report/urfave/cli]
[image: top level coverage] [http://gocover.io/github.com/urfave/cli] /
[image: altsrc coverage] [http://gocover.io/github.com/urfave/cli/altsrc]

Notice: This is the library formerly known as
github.com/codegangsta/cli – Github will automatically redirect requests
to this repository, but we recommend updating your references for clarity.

cli is a simple, fast, and fun package for building command line apps in Go. The
goal is to enable developers to write fast and distributable command line
applications in an expressive way.


	Overview

	Installation
	Supported platforms

	Using the v2 branch

	Pinning to the v1 releases





	Getting Started

	Examples
	Arguments

	Flags
	Placeholder Values

	Alternate Names

	Ordering

	Values from the Environment

	Values from alternate input sources (YAML, TOML, and others)





	Subcommands

	Subcommands categories

	Exit code

	Bash Completion
	Enabling

	Distribution

	Customization





	Generated Help Text
	Customization





	Version Flag
	Customization

	Full API Example









	Contribution Guidelines




Overview

Command line apps are usually so tiny that there is absolutely no reason why
your code should not be self-documenting. Things like generating help text and
parsing command flags/options should not hinder productivity when writing a
command line app.

This is where cli comes into play. cli makes command line programming fun,
organized, and expressive!




Installation

Make sure you have a working Go environment.  Go version 1.2+ is supported.  See
the install instructions for Go [http://golang.org/doc/install.html].

To install cli, simply run:

$ go get github.com/urfave/cli





Make sure your PATH includes the $GOPATH/bin directory so your commands can
be easily used:

export PATH=$PATH:$GOPATH/bin






Supported platforms

cli is tested against multiple versions of Go on Linux, and against the latest
released version of Go on OS X and Windows.  For full details, see
./.travis.yml and ./appveyor.yml.




Using the v2 branch

Warning: The v2 branch is currently unreleased and considered unstable.

There is currently a long-lived branch named v2 that is intended to land as
the new master branch once development there has settled down.  The current
master branch (mirrored as v1) is being manually merged into v2 on
an irregular human-based schedule, but generally if one wants to “upgrade” to
v2 now and accept the volatility (read: “awesomeness”) that comes along with
that, please use whatever version pinning of your preference, such as via
gopkg.in:

$ go get gopkg.in/urfave/cli.v2





...
import (
  "gopkg.in/urfave/cli.v2" // imports as package "cli"
)
...








Pinning to the v1 releases

Similarly to the section above describing use of the v2 branch, if one wants
to avoid any unexpected compatibility pains once v2 becomes master, then
pinning to v1 is an acceptable option, e.g.:

$ go get gopkg.in/urfave/cli.v1





...
import (
  "gopkg.in/urfave/cli.v1" // imports as package "cli"
)
...





This will pull the latest tagged v1 release (e.g. v1.18.1 at the time of writing).






Getting Started

One of the philosophies behind cli is that an API should be playful and full of
discovery. So a cli app can be as little as one line of code in main().


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
cli.NewApp().Run(os.Args)
}


This app will run and show help text, but is not very useful. Let's give an
action to execute and some help documentation:

<!-- {
  "output": "boom! I say!"
} -->
``` go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Name = "boom"
  app.Usage = "make an explosive entrance"
  app.Action = func(c *cli.Context) error {
    fmt.Println("boom! I say!")
    return nil
  }

  app.Run(os.Args)
}





Running this already gives you a ton of functionality, plus support for things
like subcommands and flags, which are covered below.




Examples

Being a programmer can be a lonely job. Thankfully by the power of automation
that is not the case! Let’s create a greeter app to fend off our demons of
loneliness!

Start by creating a directory named greet, and within it, add a file,
greet.go with the following code in it:


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()
app.Name = “greet”
app.Usage = “fight the loneliness!“
app.Action = func(c *cli.Context) error {
fmt.Println(“Hello friend!”)
return nil
}

app.Run(os.Args)
}


Install our command to the `$GOPATH/bin` directory:





$ go install


Finally run our new command:





$ greet
Hello friend!


cli also generates neat help text:





$ greet help
NAME:
greet - fight the loneliness!

USAGE:
greet [global options] command [command options] [arguments...]

VERSION:
0.0.0

COMMANDS:
help, h  Shows a list of commands or help for one command

GLOBAL OPTIONS
–version Shows version information


### Arguments

You can lookup arguments by calling the `Args` function on `cli.Context`, e.g.:

<!-- {
  "output": "Hello \""
} -->
``` go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Action = func(c *cli.Context) error {
    fmt.Printf("Hello %q", c.Args().Get(0))
    return nil
  }

  app.Run(os.Args)
}






Flags

Setting and querying flags is simple.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang”,
Value: “english”,
Usage: “language for the greeting”,
},
}

app.Action = func(c *cli.Context) error {
name := “Nefertiti”
if c.NArg() > 0 {
name = c.Args().Get(0)
}
if c.String(“lang”) == “spanish” {
fmt.Println(“Hola”, name)
} else {
fmt.Println(“Hello”, name)
}
return nil
}

app.Run(os.Args)
}


You can also set a destination variable for a flag, to which the content will be
scanned.

<!-- {
  "output": "Hello someone"
} -->
``` go
package main

import (
  "os"
  "fmt"

  "github.com/urfave/cli"
)

func main() {
  var language string

  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name:        "lang",
      Value:       "english",
      Usage:       "language for the greeting",
      Destination: &language,
    },
  }

  app.Action = func(c *cli.Context) error {
    name := "someone"
    if c.NArg() > 0 {
      name = c.Args()[0]
    }
    if language == "spanish" {
      fmt.Println("Hola", name)
    } else {
      fmt.Println("Hello", name)
    }
    return nil
  }

  app.Run(os.Args)
}





See full list of flags at http://godoc.org/github.com/urfave/cli


Placeholder Values

Sometimes it’s useful to specify a flag’s value within the usage string itself.
Such placeholders are indicated with back quotes.

For example this:


```go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag{
cli.StringFlag{
Name:  “config, c”,
Usage: “Load configuration from FILE”,
},
}

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE   Load configuration from FILE


Note that only the first placeholder is used. Subsequent back-quoted words will
be left as-is.

#### Alternate Names

You can set alternate (or short) names for flags by providing a comma-delimited
list for the `Name`. e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "&#45;&#45;lang value, &#45;l value.*language for the greeting.*default: \"english\""
} -->
``` go
package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
    },
  }

  app.Run(os.Args)
}





That flag can then be set with --lang spanish or -l spanish. Note that
giving two different forms of the same flag in the same command invocation is an
error.




Ordering

Flags for the application and commands are shown in the order they are defined.
However, it’s possible to sort them from outside this library by using FlagsByName
with sort.

For example this:


``` go
package mainimport (
“os”
“sort”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “Language for the greeting”,
},
cli.StringFlag{
Name: “config, c”,
Usage: “Load configuration from FILE”,
},
}

sort.Sort(cli.FlagsByName(app.Flags))

app.Run(os.Args)
}


Will result in help output like:





–config FILE, -c FILE  Load configuration from FILE
–lang value, -l value  Language for the greeting (default: “english”)


#### Values from the Environment

You can also have the default value set from the environment via `EnvVar`.  e.g.

<!-- {
  "args": ["&#45;&#45;help"],
  "output": "language for the greeting.*APP_LANG"
} -->
``` go
package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Flags = []cli.Flag {
    cli.StringFlag{
      Name: "lang, l",
      Value: "english",
      Usage: "language for the greeting",
      EnvVar: "APP_LANG",
    },
  }

  app.Run(os.Args)
}





The EnvVar may also be given as a comma-delimited “cascade”, where the first
environment variable that resolves is used as the default.


``` go
package mainimport (
“os”

“github.com/urfave/cli”
)

func main() {
app := cli.NewApp()

app.Flags = []cli.Flag {
cli.StringFlag{
Name: “lang, l”,
Value: “english”,
Usage: “language for the greeting”,
EnvVar: “LEGACY_COMPAT_LANG,APP_LANG,LANG”,
},
}

app.Run(os.Args)
}


#### Values from alternate input sources (YAML, TOML, and others)

There is a separate package altsrc that adds support for getting flag values
from other file input sources.

Currently supported input source formats:
* YAML
* TOML

In order to get values for a flag from an alternate input source the following
code would be added to wrap an existing cli.Flag like below:

``` go
  altsrc.NewIntFlag(cli.IntFlag{Name: "test"})





Initialization must also occur for these flags. Below is an example initializing
getting data from a yaml file below.

  command.Before = altsrc.InitInputSourceWithContext(command.Flags, NewYamlSourceFromFlagFunc("load"))





The code above will use the “load” string as a flag name to get the file name of
a yaml file from the cli.Context.  It will then use that file name to initialize
the yaml input source for any flags that are defined on that command.  As a note
the “load” flag used would also have to be defined on the command flags in order
for this code snipped to work.

Currently only the aboved specified formats are supported but developers can
add support for other input sources by implementing the
altsrc.InputSourceContext for their given sources.

Here is a more complete sample of a command using YAML support:


``` go
package notmainimport (
“fmt”
“os”

“github.com/urfave/cli”
“github.com/urfave/cli/altsrc”
)

func main() {
app := cli.NewApp()

flags := []cli.Flag{
altsrc.NewIntFlag(cli.IntFlag{Name: “test”}),
cli.StringFlag{Name: “load”},
}

app.Action = func(c *cli.Context) error {
fmt.Println(“yaml ist rad”)
return nil
}

app.Before = altsrc.InitInputSourceWithContext(flags, altsrc.NewYamlSourceFromFlagFunc(“load”))
app.Flags = flags

app.Run(os.Args)
}


### Subcommands

Subcommands can be defined for a more git-like command line app.

<!-- {
  "args": ["template", "add"],
  "output": "new task template: .+"
} -->
```go
package main

import (
  "fmt"
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name:    "add",
      Aliases: []string{"a"},
      Usage:   "add a task to the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("added task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:    "complete",
      Aliases: []string{"c"},
      Usage:   "complete a task on the list",
      Action:  func(c *cli.Context) error {
        fmt.Println("completed task: ", c.Args().First())
        return nil
      },
    },
    {
      Name:        "template",
      Aliases:     []string{"t"},
      Usage:       "options for task templates",
      Subcommands: []cli.Command{
        {
          Name:  "add",
          Usage: "add a new template",
          Action: func(c *cli.Context) error {
            fmt.Println("new task template: ", c.Args().First())
            return nil
          },
        },
        {
          Name:  "remove",
          Usage: "remove an existing template",
          Action: func(c *cli.Context) error {
            fmt.Println("removed task template: ", c.Args().First())
            return nil
          },
        },
      },
    },
  }

  app.Run(os.Args)
}










Subcommands categories

For additional organization in apps that have many subcommands, you can
associate a category for each command to group them together in the help
output.

E.g.

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()

  app.Commands = []cli.Command{
    {
      Name: "noop",
    },
    {
      Name:     "add",
      Category: "template",
    },
    {
      Name:     "remove",
      Category: "template",
    },
  }

  app.Run(os.Args)
}





Will include:

COMMANDS:
    noop

  Template actions:
    add
    remove








Exit code

Calling App.Run will not automatically call os.Exit, which means that by
default the exit code will “fall through” to being 0.  An explicit exit code
may be set by returning a non-nil error that fulfills cli.ExitCoder, or a
cli.MultiError that includes an error that fulfills cli.ExitCoder, e.g.:

package main

import (
  "os"

  "github.com/urfave/cli"
)

func main() {
  app := cli.NewApp()
  app.Flags = []cli.Flag{
    cli.BoolTFlag{
      Name:  "ginger-crouton",
      Usage: "is it in the soup?",
    },
  }
  app.Action = func(ctx *cli.Context) error {
    if !ctx.Bool("ginger-crouton") {
      return cli.NewExitError("it is not in the soup", 86)
    }
    return nil
  }

  app.Run(os.Args)
}








Bash Completion

You can enable completion commands by setting the EnableBashCompletion
flag on the App object.  By default, this setting will only auto-complete to
show an app’s subcommands, but you can write your own completion methods for
the App or its subcommands.


``` go
package mainimport (
“fmt”
“os”

“github.com/urfave/cli”
)

func main() {
tasks := []string{“cook”, “clean”, “laundry”, “eat”, “sleep”, “code”}

app := cli.NewApp()
app.EnableBashCompletion = true
app.Commands = []cli.Command{
{
Name:  “complete”,
Aliases: []string{“c”},
Usage: “complete a task on the list”,
Action: func(c *cli.Context) error {
fmt.Println(“completed task: ”, c.Args().First())
return nil
},
BashComplete: func(c *cli.Context) {
// This will complete if no args are passed
if c.NArg() > 0 {
return
}
for _, t := range tasks {
fmt.Println(t)
}
},
},
}

app.Run(os.Args)
}


#### Enabling

Source the `autocomplete/bash_autocomplete` file in your `.bashrc` file while
setting the `PROG` variable to the name of your program:

`PROG=myprogram source /.../cli/autocomplete/bash_autocomplete`

#### Distribution

Copy `autocomplete/bash_autocomplete` into `/etc/bash_completion.d/` and rename
it to the name of the program you wish to add autocomplete support for (or
automatically install it there if you are distributing a package). Don't forget
to source the file to make it active in the current shell.





sudo cp src/bash_autocomplete /etc/bash_completion.d/
source /etc/bash_completion.d/
  
    
    
    YAML support for the Go language
    
    

    
 
  
  

    
      
          
            
  
YAML support for the Go language


Introduction

The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within Canonical [https://www.canonical.com] as
part of the juju [https://juju.ubuntu.com] project, and is based on a
pure Go port of the well-known libyaml [http://pyyaml.org/wiki/LibYAML]
C library to parse and generate YAML data quickly and reliably.




Compatibility

The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they’re a poor design and are gone in YAML 1.2.




Installation and usage

The import path for the package is gopkg.in/yaml.v2.

To install it, run:

go get gopkg.in/yaml.v2








API documentation

If opened in a browser, the import path itself leads to the API documentation:


	https://gopkg.in/yaml.v2






API stability

The package API for yaml v2 will remain stable as described in gopkg.in [https://gopkg.in].




License

The yaml package is licensed under the Apache License 2.0. Please see the LICENSE file for details.




Example

package main

import (
        "fmt"
        "log"

        "gopkg.in/yaml.v2"
)

var data = `
a: Easy!
b:
  c: 2
  d: [3, 4]
`

type T struct {
        A string
        B struct {
                RenamedC int   `yaml:"c"`
                D        []int `yaml:",flow"`
        }
}

func main() {
        t := T{}
    
        err := yaml.Unmarshal([]byte(data), &t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t:\n%v\n\n", t)
    
        d, err := yaml.Marshal(&t)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- t dump:\n%s\n\n", string(d))
    
        m := make(map[interface{}]interface{})
    
        err = yaml.Unmarshal([]byte(data), &m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m:\n%v\n\n", m)
    
        d, err = yaml.Marshal(&m)
        if err != nil {
                log.Fatalf("error: %v", err)
        }
        fmt.Printf("--- m dump:\n%s\n\n", string(d))
}





This example will generate the following output:

--- t:
{Easy! {2 [3 4]}}

--- t dump:
a: Easy!
b:
  c: 2
  d: [3, 4]


--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]

--- m dump:
a: Easy!
b:
  c: 2
  d:
  - 3
  - 4











          

      

      

    

  
nav.xhtml

    
      Table of Contents


      
        		Welcome to Read the Docs


      


    
  

_static/up.png





_static/file.png





_static/down-pressed.png





_static/minus.png





_static/up-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





_static/ajax-loader.gif





_static/down.png





_static/plu